END SEMESTER-EXAMINATION - DECEMBER 2023

Program: S.Y.B.Tech (Civil) \qquad secy 11

Course Code: BS-BTC301

Duration: 3 Hours
Maximum Points: 100

Course Name: Laplace, Linear Algebra and Complex Analysis
Semester: III

Note:

1. Attempt Any Five Questions
2. Answers to the sub questions should be grouped together
3. Use of CALCULATOR is prohibited.

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEMESTER-EXAMINATION - DECEMBER 2023

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEMESTER-EXAMINATION - DECEMBER 2023

Re-EXAMINATION - February 2023

Program: S.Y.B.Tech (Civil)

Course Code: BS-BTC301
Course Name: Laplace, Linear Algebra and Complex Analysis
Semester: III

Note:

1. Attempt Any Five Questions
2. Answers to the sub questions should be grouped together
3. Use of CALCULATOR is prohibited.

Re-EXAMINATION - February 2023

		$A=\left[\left.\begin{array}{cccc}4 & -1 & 2 & 1 \\ 1 & 3 & 1 & 2 \\ -1 & 2 & 4 & 5 \\ 7 & 3 & 8 & 7\end{array} \right\rvert\,\right.$				
	c	Evaluate (i) $L\left\{t^{t} \cos 3 t\right\}$ (ii) $L\left\{\frac{\cos a t-\cos b t}{t}\right\}$	8	1	BL3	1
3	a	Find the sum and product of the Eigen Values of adjA where $A=\left[\begin{array}{llll} 2 & 0 & 0 & 0 \\ 3 & 5 & 0 & 0 \\ 4 & 7 & 3 & 0 \\ 5 & 6 & 7 & 1 \end{array}\right]$	6	3	BL4	5
	b	Prove that $\int_{0}^{\infty} \frac{e^{-\sqrt{2} t} \sinh t \cdot \sin t}{t} d t=\frac{\pi}{8}$	6	I	BL5	1
	c	Find the analytic function $f(z)=u(x, y)+i v(x, y)$ whose real part is $u(x, y)=\frac{1}{2} x \log \left(x^{2}+y^{2}\right)-y \tan ^{-1}\left(\frac{y}{x}\right)+\sin x \cdot \cosh y$	8	2	BL5	3
4	a	Evaluate $L\left\{\int_{0}^{t} e^{-3 u} \cdot \sin 2 u d u+4^{t}\right\}$	6	1	BL5	1
	b	Find the image of the infinite strip $\frac{1}{4}<y<\frac{1}{2}$ under the transformation $w=\frac{1}{z}$. Show the region graphically.	6	2	BL3	3
	c	Find two non-singular matrices P and Q such that PAQ is in the normal form $A=\left[\begin{array}{cccc} 3 & 2 & 1 & 4 \\ 12 & 4 & 8 & 0 \\ 9 & 5 & 4 & 9 \end{array}\right]$	8	3	BL3	4

Re-EXAMINATION - February 2023

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai -400058
END SEMESTER EXAMINATION DECEMBER 2023
S. $V=$

Program: B. Tech Civil Engineering
LeM
11
Duration: $\mathbf{3} \mathbf{~ H r}$.

Maximum Points: 100

Course Name: Mechanics of Materials

Semester: III

Notes: Solve any 5 questions

Page 1 of 5

END SEMESTER EXAMINATION DECEMBER 2023

(Goverıment Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMUNATION DECEMBER 2023

3(b)	A simply supported beam of span 6.0 m is subjected to udl of 40 Kn / m and point load of 50 Kn at centre of span, if permissible stress in flexure is 100 Mpa and allowable shear stress 10 MPa calculate beam depth to be provided if width beam is 250 mm	10	02	3	3
4(a)	Determine the maximum torque that can be applied to a hollow circular Steel shaft of $100-\mathrm{mm}$ outside diameter and an $80-\mathrm{mm}$ inside diameter without exceeding a shearing stress of 60 MPa or a twist of $0.5 \mathrm{deg} / \mathrm{m}$. Use G-83 GPa.	08	02	04	5
4(b)	A $5-\mathrm{m}$ steel shaft rotating at 2 Hz has 70 kW applied at a gear at B that is 2 m from the left end A where 20 kW are removed. At the right end D , 30 kW are removed and another 20 kW leaves the shaft at 1.5 m from the right end at C. (a) Find the uniform shaft diameter so that the shearing stress will not exceed 60 MPa . (b) If a uniform shaft diameter of 100 mm is specified, determine the angle by which one end of the shaft lags behind the other end. Use $\mathrm{G}=83 \mathrm{GPa}$.	12	02	03	5
5(a)	Calculate and draw shear stress distribution for unequal I beam shown subjected to maximum shear force for a beam of 5 m span loaded with udl of $30 \mathrm{kn} / \mathrm{m}$.	10	02	03	1

END SEMESTER EXAMINATION DECEMBER 2023

END SEMESTER EXAMINATION DECEMBER 2023

7(a)	For the given element with stresses as shown, calculate state of stress if an element is rotated by 30° clockwise. Use transformation equations. Also find out values of principle stresses and maximum shear stress.	10	2	04	16
7(b)	For the element with state of stress given as $\sigma=\left[\begin{array}{cc} 20 & -10 \\ -10 & 50 \end{array}\right] \mathrm{MPa}$ Find state of stress if an element is rotated by 30° anticlockwise using Mohr's circle.. Also find out values of principle stresses and maximum shear stress.	10	2	04	6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 100058
S. RE / PREVIOUS YEAR EXAMINATION FEBRUARY 2024

Program: B. Tech Civil Engineering LeM Course Code: ES BTC302
Course Name: Mechanics of Materials

Note: Solve any 5 questions.

Semester: III

Duration: 3 Hr.
Maximum Points: 100

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 100058
RE / PREVIOUS YEAR EXAMINATION FEBRUARY 2024

3(b)	A simply supported beam 4 m long has the cross section shown in Fig. It carries a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ over the middle half of the span. Compute the maximum stresses in the wood and steel Modulus of Elasticity, E Steel $=200 \mathrm{GPa}$ Wood $=13.3 \mathrm{GPa}$	12	2	3	3
4(a)	A solid steel shaft in a rolling mill transmits 20 kW of power at 2 Hz . Determine the smallest safe diameter of the shaft if the shear stress $\boldsymbol{\tau w}$ is not to exceed 40 MPa and the angle of twist θ islimited to 6° in a length of 3 m . Use $\mathrm{G}=83 \mathrm{GPa}$.	10	2	3	5
4(b)	An aluminium shaft with a constant diameter of 50 mm is loaded by torques applied to gears attached to it as shown in Fig. Using G -28 GPa , determine the relative angle of twist of gear D relative to gear A .	10	2	3	5

(Government Aided Autonomous Institute)
Munshi Nagar, Andhori (W) Mumbai - 400058
RE / PREVIOUS YEAR EXAMINATION FEBRUARY 2024

5(a)	Square box beam constructed from four planks. Spacing between nails is 44 mm and Vertical shear force $V=2.7 \mathrm{kN}$. Find shearing force in each nail	07	2	3	4
5(b)	Calculate shear center for channel section shown using fundamental principles and Calculate shear stress distribution for channel, if maximum shear force is 70 Kn . $\mathrm{b}_{\text {flange }}=200 \mathrm{~mm} \mathrm{t}_{\mathrm{f}}=8 \mathrm{~mm}, \mathrm{t}_{\mathrm{w}}=10 \mathrm{~mm}, \mathrm{~h}=250 \mathrm{~mm}$	13	4	3	4
6(a)	For the beam shown, draw shear force diagram and bending moment diagram using equation method or using area method	12	1	3	2
6 (b)	For the given shear force diagram, draw loading diagram and draw bending moment diagram by area method.	08	1	3	2

RE / PREVIOUS YEAR EXAMINATION FEBRUARY 2024

7(a)	For the given element with stresses as shown, calculate state of stress if an element is rotated by 30° clockwise. Use transformation equations Also calculate Principal stresses and maximum shear stress using equations	12	2	3	6
7(b)	For the element with state of stress given as $\left[\begin{array}{cc} 10 & -5 \\ -5 & 30 \end{array}\right] \mathrm{Mpa}$ Find state of stress if an element is rotated by 60° anticlockwise, plotting Mohr's circle. Also find out values of principle stresses and maximum shear stress.	08	2	3	6

SIRDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar. Andheri (W) Mumbai -400058
End Semester Examination December 2023

Program: B. Tech. Civil Engineering

Course Code: PE-BTC303
Course Name: Basics of Surveying
\section*{Notes:}
Duration: 3 hrs.
Maximum Points: 100
Semester: III
1. There are TOTAL SEVEN MAIN questions, each of 20 points.
2 QUESTION 1 is COMPULSORY. Solve any FOUR from remaining SIX QUESTIONS.
3. Write answer to each MAIN QUESTION on a new page.
4 Answers to be accompanied with appropriate sketches/facts \& figures/table or chart/graph/diagram/flowehart wherever necessary or required.
5 Assume suitable data wherever needed and state it clearly.

Page 1 of 3
(Govermment Aided Autonomous Institute)
Munshi Nagar. Andheri (W) Mumbai- 400058
End Semester Examination December 2023

	1. Draw the traverse. (2) 2. Prepare Gales Traverse Table. (2) 3 Calculate Observed latitude and departures. (3) 4. Calculate the Closing error. (3) 5. Corrected latitude and departures. (3) 6. Independent coordinates. (2) [Assume Independent coordinates (X and V) at A as 1000.00 m both]			
3.A	Following readings were taken with a level and 4 m staff. Draw up a level book page (2) and reduce the levels (8) along with checks (2) by height of instrument (HI) method. $0.683,1.109,1.838,3.399$, (3.877 and 0.451) Change point (CP), 1.405, 1.896, 2.676, 3.478, (3.999 and 1.834) CP, 0.649, 1.706 . The benchmark (BM) at the first point is 36.545 m .	12	1,3	1,2,3
3.B	Explain, with a neat sketch, the principle and procedure involved in reciprocal leveling. Provide a step-by-step description of the reciprocal leveling process (6) and provide a real-world example where reciprocal leveling would be particularly applicable. (2)	8	1,3	1,2,3
4.A	To determine the gradient between two points A and B , a tacheometer was set up at another station O and the following observations were taken keeping the staff vertical. Draw the sketch. (1) If the horizontal angle AOB is $35^{\circ} 20^{\circ}$, determine: 1. Horizontal Distance $A B$ (3) 2. Vertical distance at A and B (3) 3. R.L. at A and B (3) 4 Gradient between A and B (2) Reduced level (R.L.) at O is 100.00 m and the height of instrument is 1.5 m . Take $\mathrm{K}=100$ and $\mathrm{C}=0.00$.	12	1,3	1,2,3
4.B	Provide an overview of Electronic Distance Measuring (EDM) and Electronic theodolite, highlighting their key features, applications, and advantages over traditional instruments. (6) Additionally, explain how these modern instruments contribute to increased accuracy, efficiency, and data precision in surveying projects. (2)	8	1,2	1,2,3
5.A	Provide a step-by-step procedure on how a surveyor would conduct a Plane Table traverse. Support your answer with proper sketch. (6)	6	1,2,4	1,2,3
5.B	Discuss the advantages and limitations of Plane Table traversing in comparison to other surveying methods. (4)	4	1,2,4	1,2,3
5.C	Following perpendicular offsets were taken at 10 m intervals from a survey line to an	10	1.3	1.2 .3

(Govermment Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai-400058
S.Y.

Program: Civil Engineering
Course Code: ES-BTC-304
Course Name: Building Drawing with CAD

Notes:

Duration: 3.00 hrs . Maximum Points: 100

1. Q. 1 is compulsory \& attempts any four out of remaining six.
2. Illustrate answer with neat sketches wherever required.
3. Make suitable assumptions where necessary and state them clearly.

Q.No	Questions	Mark \mathbf{s}	$\begin{aligned} & \mathbf{B} \\ & \mathbf{L} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{O} \end{aligned}$	PI Code
1	Draw to a suitable scale ground floor plan of G+1 storey bungalow for a Resident Doctor in a site of the data given below. 1. Plot size: $30 \mathrm{M} \times 34 \mathrm{M}$. 2. Road is on southern side parallel to 30 M direction 3. Wind direction is S-SW-W \& climatic zone is hot and humid. 4. Requirements a. Small Clinic b. Master bed room c. Living room d. Children bed room e. Kitchen cum dining room f. Guest bed room g. Staircase/bath/WC/store/verandah are to be provided A) Draw developed plan for ground floor B) Draw line plan of terrace plan	$15+05$	1	1-3	1	1.3.1
2	A. Draw to a suitable scale line plan of first floor for Q.I. B. State: Built up area, carpet area, super built up area, FSI for Q.I.	$15+05$	2	1	1	1.3.1
3	Draw to a suitable scale line plans of Central Library in College building in a site given below 1. $(30 \mathrm{~m} \times 50 \mathrm{~m})-$ Student capacity : 240	20	3	3	1,2	$\begin{aligned} & 1.3 .1 / \\ & 2.1 .3 \end{aligned}$
4	A. Explain the duties \& responsibilities of Contractor/Builder \& buyer under Real estate regulation act, 2016. B. Explain how Sanitation and Furniture is to be maintained in a planning of residential building.	$10+10$	2	2	1	1.3.1
5	A. Draw to a suitable scale Site plan for Q.1. B. Explain how to fix a height of building and byelaws for Minimum sizes of units.	10+10	3	3	1,2	$\begin{aligned} & 1.3 .1 / \\ & 2.1 .3 \end{aligned}$

	BharatiyaVidyaBhavan's SARDAR PATEL COLLEGE OF ENGINEERING (Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai-400058					
6	A. Draw to a suitable scale Foundation plan for Q.I. B. Draw to a suitable scale sectional elevation for Q.1.	$10+10$	2	1-3	1,2	$\begin{aligned} & 1.3 .1 / \\ & 2.1 .3 \end{aligned}$
7	A. Draw to a suitable scale Water supply \& Drainage plan for Q.1. B. Draw to a suitable scale Electricity\& Furniture plan for Q.1.	$10+10$	2	1-3	1,2	$\begin{aligned} & 1.3 .1 / \\ & 2.1 .3 \end{aligned}$

S. y,
 END SEMESTER EXAMINATION-DEC-2023

Program: CIvil Engineering LeM \qquad Course Code: ES-BTC-304
Course Name: Building Drawing with CAD

Duration: 3.00 hrs.
Maximum Points: 100
Semester: III

Notes:

1. Q. 1 is compulsory \& attempts any four out of remaining six.
2. Illustrate answer with neat sketches wherever required.
3. Make suitable assumptions where necessary and state them clearly.

	BharatiyaVidyaBhavan's SARDAR PATEL COLLEGE OF ENGINEERING (Govermment Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai- 400058				
	B. Draw a sectional elevational plan for Q.1A				
6	A. B. Draw to a suitable scale Foundation plan for Q.1A. Draw to a suitable scale site plan for Q.1A.	15+05	L3	1-3	$1 / 3 /$ 5
7	A. Draw to a suitable scale Water supply \& Drainage plan for Q .1 A . B. Draw to a suitable scale Electricity\& Fumiture plan for Q.1A.	$10+10$	L3	1-3	$1 / 3 /$ 5

END SEMESTER EXAMINATION DECEMBER 2023

Program: S.Y. B.Tech. Civil Engineering LeMM II
Course Code: BS-BTC 305
Course Name: Engineering Geology

Duration: 3hours
Maximum Points: $\mathbf{1 0 0}$
Semester: III

Q. No.	Questions	Points	CO	BL	Module No.
1	a) Write short notes on all of the following- (2 marks each) i)Rayleigh Wave ii) Oxbow Lake iii)Weathering due to temperature changes iv) Vertical and lateral erosion by river v) Wind transportation	$2 \times 5=10$	1	2	I
2	a) What is a seismogram? Explain how a simple seismograph measures horizontal and vertical ground movements caused by an earthquake. b) Describe the mechanism of formation of a sand dune with a neat diagram.	$\begin{aligned} & 1+4=5 \\ & 4+1=5 \end{aligned}$	1	2	I
3	a) Explain the rock cycle with a neat, labelled diagram. b) Describe any two laws of stratigraphy. What is the difference between peninsular and extra-peninsular India?	$\left.\right\|_{2} ^{5} \times 2+1=5$	1	2	
4 a	The geological map shows the contact between sandstane and limestone. The two dotred curves are the eontouss of 400 m and 500 m , rexpectively. The difference between the dip angles of the contac surface along the AB and AC directions is \qquad degree (rounded off to two decimal places)	5	1	3	4

Q. No.	Questions	Points	CO	BL	Module No.
6 b	A dam with an axis of $\mathrm{E}-\mathrm{W}$ is to be constructed in a narrow valley between two elevated areas/abutments of strong, hard rocks running N-S. If the foundation rocks are not very strong, suggest the type of dam that should be constructed in this case Should the rocks in the elevated areas be in the N-S or E-W direction? Should they dip upstream or downstream? Draw a diagram to support your answer.	5	3	4	6
7	a) Describe any two methods of surface geological investigation. State one significance of photogeology in civil engineering. b) Draw a diagram showing the Wenner and Schlumberger arrangements of spacing of electrodes of the resistivity method of investigation. c) State the principle of the resistivity method of geological investigation.	$2 \times 2+1=5$ 4 I	1	3 2 2	5
8	a) Explain any one method of drilling with a diagram. b) A coal bed dips in the direction 180° (whole-bearing form). Find its strike direction. If the coal bed lies at an elevation of 1150 m above the mean sea level, in what direction should a borewell be drilled so that it intersects the coal bed? At what depth will the borewell and the coal bed intersect?	$4+1=5$ 5	$\left\lvert\, \begin{aligned} & 1 \\ & 2 \end{aligned}\right.$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	5
9	a) What is the difference between geological drilling and geological logging? Explain the neutron logging method of geological investigation.	5	1	2	
	b) What is the importance of geological drilling in civil engineering? c) A densely populated area requires the drilling of a borewell to install a drainage pipe beneath the settlements. What measure can be used for drilling without adversely affecting the populated area? Justify your answer by adding any two advantages of this drilling method over the conventional drilling method.	4	1 3	3 6	
Page 3/4					

END SEMESTER RE-EXAMINATION FEBRUARY 2024

Program: S.Y. B.Tech. Civil Engineering

Duration: $\mathbf{3}$ hours
Maximum Points:100
Course Code: BS-BTC 305
Course Name: Engineering Geology
NOTE-Answer any FIVE of the following-
Semester: III

4	a) An object is spotted at N20E from an observer. If the position of the object is changed by 180 degree clockwise, what is the new position of the object? b) Explain any one method of geological drilling and one method of surface geological exploration with suitable diagrams.	5 $10+5=15$	1 1	3 2	4 5
5	a) Draw a diagram showing an unconfined and a confined aquifer. b) Draw the apparatus/set up used for resistivity method of geological investigation. c) Mention any two events of the Paleozoic Era and two events of the Cenozoic Era. d) What is photogeology? What is the importance of photogeology in civil engineering?	5 5 5 5	1 1 1 3	2 2 2 3	
6	a) What is directional drilling? Why is it more advantageous than conventional drilling? Draw diagrams. b) Describe the parts of a typical dam with a neat diagram.	$2+8=10$ 10	3 2	4 2	5 6
7	a) Explain the effect of different orientations of beds on tunnel construction with diagrams. b) If the strikes of two limbs of a fold are N55E and S70E, what is the angle between the limbs of the fold? c) Explain the zones of groundwater using a neat diagram.	10 5 5	1	3 3 3	6 4 6 6

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEMESTER EXAMINATION -DEC-2023

Program: Civil Eng g
Course Code: PC-BTC-306
Course Name: Fluid Mechanics

Duration: 3 hrs.
Maximum Points: 100
Semester: III

Notes:

1. Question no 1 is compulsory \& attempt any four out of remaining six questions.
2. Illustrate answer with neat sketches wherever required.
3. Make suitable assumptions where necessary and state them clearly.

Page 1 of 2

END SEMESTER EXAMINATION -DEC-2023

	m below the oil surface. Find the Total pressure force on plate \& position of centre of pressure				
4.A	"Pressure gradient in the direction of flow is equal to the shear gradient in the direction normal to the direction of flow" Prove the above statement. State the formulae for flow of viscous fluid between two parallel plates.	06+03	2	II	1.3.1
4.B	Compare law of fluid friction for laminar and turbulent flow.	05	2	V	2.1.3
4.C	The left limb of a U - Tube mercury manometer is connected to a pipe line conveying water, the level of mercury in the limb being 0.75 m below the centre of pipe line and the right leg is open to atmosphere. The level of mercury in right limb is 0.60 m above that in left limb and the space above mercury in the right limb contains benzene (sp. gravity 0.88) to a height of 0.45 m . find the pressure in the pipe.	06	2	V	2.1.3
5.A	What is Reynolds number? Derive an expression for head loss in pipes due to friction by Darcy-Weisbach equation	10	3	V	2.4.1
5.B	Explain the different types of fluid motion in fluid kinematics.	04	3	II	1.3.1
5.C	Define: Pitot Tube. Derive an expression for velocity of flow at any point in pipes or channel.	06	3	V	2.1.3
6.A	Define the conservation of mass $\&$ equation of continuity, Obtain an expression for the continuity equation for a three dimensional flow in Cartesian co-ordinate system.	08	3	V	2.1.3
6.B	In fluid the velocity vector is given by $V=4 x^{3} i-10 x^{2} y j+2 t k$. Determine: 1. The velocity components u, v, w at any point in the flow field. 2. Speed at point $(1,1,1)$ 3. Speed at time $t=2$ sec.at a point $(0,0,2)$. Also classify the velocity field is steady/ unsteady/ $1 \mathrm{D} /$ 2D/3D/ uniform/non-uniform flow.	06	3	II	2.4.1
6.C	Write a short note on velocity potential function and stream function.	06	3	II	2.4.1
7.A	Define: Bernoulis Theorem. State assumptions and prove Bernoulli's theorem for flow liquids.	10	3	V	2.1 .3
7.B	Explain the classification fluid flows in fluid kinematics.	06	3	V	2.4.1
7.C	State hydraulic coefficients used orifice.	04	3	V	2.4.1

Re- Examinations Feb 2024

Program: Civil Engineering
Course Code: PC-BTC306

Course Name: Fluid Mechanics Instructions

1. Attempt any 5 questions out of 7 questions.
2. Neat diagrams must be drawn wherever necessary.
3. Assume Suitable data if necessary and state it clearly.

	$\begin{gathered} u=y^{2}+z^{2}+x^{2}, v=x y^{2}-y z^{2}+x y \\ v=2 y^{2} w=2 x y z \end{gathered}$ component of velocity such that they satisfy the				
4b	Determine the total pressure on one face of the plate and position of the center of pressure when	7	CO1	BL3	
	The upper edge is 2 m below free surface. Plane rectangular surface $3 \mathrm{~m} \times 4 \mathrm{~m}$ deep lies in water in such a way that its plane makes an angle of 30 degrees with the free surface of water.				
4 c	Write down the Bernoulli's equation for the real fluid and state the assumptions made in the derivation of Bernoulli's theorem.	5	CO1	BL2	1.2.1
5a	Find the metacentric height of the block if its size is $2 \mathrm{~m} \mathrm{X} 1 \mathrm{~m} \times 0.8 \mathrm{~m}(1 \times \mathrm{bxh})$	8	CO1	BL3	1.4.1
	The specific gravity of the wood block is $=0.7$ which floats in water				
5b	Define coefficient of discharge, coefficient of velocity and coefficient of contraction and derive relation between them.	6	CO 2	BL2	1.2.1
5c	Prove that equipotential lines are orthogonal to stream lines at all points of intersection.	6	CO 2	BL2	1.2.1
6a	Discuss with diagram stream tube, stream line and streak line.	6	CO 1	BL2	1.3.1
6b	Discuss the applications of Bernoulli's theorem.	6	CO 2	L3	4.1
6c	Discuss laminar boundary layer, turbulent boundary layer, laminar sub layer and boundary layer thickness.	8	CO 1	BL2	2.1.2
7 a	Discuss the characteristics of turbulent flow.	4	CO 1	BL2	2.1.2
7b	Explain the types of fluid flows.	8	CO1	BL2	2.1 .2
7c	Prove that pressure gradient in the direction of flow is equal to the shear gradient in the direction normal to the direction of flow.	8	CO1	BL2	1.3.1

REEXAMINATION FEBRUARY 2024

Program: B.Tech. Civil Engineering
Course Code: PC-BTC307
Course Name: Building Materials and Construction

Instructions:

1. Attempt any five out of seven Questions
2. Draw neat diagrams wherever required

3. Assume suitable data if necessary and state them clearly.

Duration: Three hours
Maximum Points: 100
Semester: III

RE-EXAMINATION FEBRUARY 2024

6	What are the characteristics of good mortar?				
a.	Explain the different types of formwork with suitability.	06	3	2	2.3 .1
b.	Eraw neat sketch of an arch; show different elements and c D. explain their functions.	05	2	1	1.3 .1
d.	List out any five green materials used in construction.	04	3	2	1.2 .1
7	Write short Notes on (Any four)		1.1 .2		
a	Bouge's compound	05	1	3	1.3 .1
b	Quick lime	05	1	1	1.3 .1
c	Components of paint	05	2	2	1.3 .1
d	Defects in timber	05	1	2	1.3 .1
e	Masonry blocks	05	2	2	1.3 .1
f	Batching of concrete	05	2	2	1.3 .1

